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Abstract- Based on first-order plate theory, a hybrid stress bimodulus Mindlin plate element is
developed in this paper. Both the displacement and stress distributions of bimodulus laminated
plates are determined. Since the neutral surface deviates from the geometric midplane, an iterative
technique is adopted. Compared to the analytical solutions, the present results are better than those
of displacement-based higher-order plate models, although only first-order theory is incorporated
herein, © 1998 Elsevier Science Ltd,

INTRODUCTION

There are some materials which exhibit load-dependent elastic properties, such as ara­
mid/rubber and polyester/rubber used in automobile tires, Their stress-strain behaviors are
actually nonlinear. These nonlinearities bring difficulties into the analysis, This problem is
overcome by using a piecewise linearization model. For a bimodular material, the stress­
strain relation is often approximated by two straight lines, as shown in Fig, I,

Classical lamination theory yields sufficiently accurate results only for thin composite
plates, wherein transverse shear effects are neglected, Mindlin-type (first-order) theories
(Mindlin, 1951) were later proposed to take these effects into account by using shear
deformation correction factors or functions, For thicker laminates, there are several higher­
order plate theories (Kant et af., 1977; Lo el af., 1988) that consider these effects without
the correction factors, Generally speaking, more accurate results are reported for higher­
order theory than for classical and first-order theories,

There have been only a few investigations. reported in the literature to study the bending
analysis of bimodulus plates, and none for the stress analysis, The classical plate theory
was used by Bert (1979), Mindlin plate theory was adopted by Bert et af. (1981) and Turvey
(1984). Fung and Doong (1988) extended the study of bimodular laminates by using a
higher-order plate theory, On the other hanel results from finite element analysis can be
found in Reddy and Chao (1980) and Bert el aZ, (1981), Displacement models and mixed
models were used, respectively, in the above studies, Finite element and finite strip solutions
were also presented by Tseng and Bai (1993) and Tseng and Lee (1995). Based on the
refined C higher-order plate theory by Reddy (1984), Gordaninejad (1989) developed a
mixed bimodulus plate element. Recently, excellent results were reported by Cho et aZ.
(1990) using a higher-order individual layer plate theory.

It is well known that the hybrid stress model can supply excellent results for laminates
especially for the interface stress continuity. Mau el aZ. (1972) initiated the hybrid stress
plate element. High accuracy and fast convergence are further improved by Spilker et af.
(1980) and Liou and Sun (1987). Unfortunately, large amounts of stress parameters are
also required. Only a fixed set of parameters is used in Rao and Piening (1991) and Rao
and Rao (1992). Their theory is attractive in formulating the hybrid stress modeL

To investigate the stress analysis of bimodulus laminates, a hybrid stress Mindlin plate
element has been formulated herein according to Rao's work. The neutral surface locations
are determined through an iterative method. lnterlaminar stress continuity and stress-free
boundary conditions are enforced since a hybrid stress model is adopted. Satisfactory
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Fig. I. Stress-strain relations of Iinearlized different modulus materials.

through thickness stress distributions for an ordinary (not bimodulus) material are com­
pared to Pagano (1970). Then, the neutral surface locations and displacements ofbimodulus
laminated plates are found to compare with previous results. it is shown that more accurate
results than for higher-order theory are obtained. Specifically, the contribution of this work
is that reasonable through thickness stress distributions for bimodulus laminated plates are
presented.

BIMODULUS PLATE THEORY

Consider a laminate composed of several layers of different materials in a Cartesian
coordinate x, y, z with its surfaced bounded by z = ±h/z; the displacement components
are u, v, w in the directions of x, y, z, respectively. As shown in Fig. 2, (uo, vo, wo) denote
displacement components of a midplane point along the x, y, z axes, and (On (}J denote the
rotations of a line element, originally perpendicular to the midplane plane. about the y­
and x-axes. The size of laminate is a and b, the principal material axes are labeled I, 2 and
3, and the angle FJ between x and I axes is defined positive as shown in Fig. 2.

In Mindlin plate theory, the displacement field is represented by

tz
I
I

U(x,y,z) = uo(x,y)-z(}Ax,y)

v(x,y,z) = Vo(x,y) +z81 (x,y)

w(x,y,z) = woCr,y).

a
Fig. 2. Geometric shape of laminated plates.

(I)
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The above equation is expressed in matrix form as

{f1} = [L]{d}

2027

(2)

where [L] is a proper differentiation operator, {f1} = [u, v, W]T is the three-dimensional
displacement field, and {d} = [ua, Va, Wa, 8" 81']T is the midplane displacement field.

Based on small deformation theory, the strains can be constructed as

Ex = U., = Ua., +z(J",

El' = V,y = Va,l' + zi~')"1

Yyz = V,e W,y = Wa,y +8)

Yc = U.e+ W., = wn,,+Ox

fn = U.)' +V, = (ua,y +ve-,J + z(O,,)' +8.1,')'

Equations (3) are then rewritten in matrix form as

(3)

(4)

where {t:} = [E" £)', Yy=, fe' Yx,Y are the strains, and [B] is a proper differentiation matrix.
Before the constitutive equations of a bimodulus plate are discussed, the neutral surface

location Znx and Znv should be determined since the elastic properties are different in the
tension or compression zone in a layer. By setting

Ex = ua,x +zex.x = 0, El' = Va,y + z8y..! = 0

the neutral surfaces are determined iteratively:

(5)

(6)

where i is the index of iteration.
The different properties in tension and compression will cause a shift in the neutral

surface away from the geometric midplane. The results that the bending-stretching couplings
ofan orthotropic material are exhibited. The constitutive relations ofan ordinary composite
material must be transferred into the bimodular form. For the nth layer of a laminate, the
stress-strain relations can be expressed as

(7)

where {oj = [0'" 0'), TIC' r,e, Tn]T are the stresses, and [Q] is the stiffness moduli, the same as
in Fung and Doong (1988).

Correspondingly. the strain-stress relations are

(8)

where [S] = rQl -I are the compliance moduli.
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FINITE ELEMENT FORMULATION

The five displacement functions (uo, vo, wo, 8" 8,) for the Mindlin plate element are
interpolated by their nodal values with shape functions. Since the four-node bilinear iso­
parametric element is developed in this paper, the displacements are represented by

ncl

Uo = I NiUO i,
i== 1

ncl

Vo = I ,VIV Oi '
i","l

nel

W Oi = I NiwOi '
1=0:0]

In matrix form, egn (9) becomes

nel

8x = I Ni8,.;,
i= I

nel

81' = I N i8yi ,
i= I

(9)

nel

{d} = [N]{q} = I [N;]{q,}
i= 1

(10)

where nel is the number of nodes, {q} = {uo" VO;, WOi, e'i' 8yJT are the nodal displacements
for the ith node, [N] is the C J shape function matrix, and [NJ is the ith node.

Substituting egn (10) into the Mindlin plate displacement field (I), the three-dimen­
sional displacements are interpolated by

ncl

{l\} = [L]{d} = [L][N]{q} = [N]{q} = I [Ni]{qi}
i= 1

(11 )

where [N], [NJ dre the shape functions matrices for the three-dimensional displacements.
The strains {c} are also expressed in terms of the nodal displacements {q} by sub­

stituting egn (10) into egn (4):

net

{e} = [B]{d} = [B][iV]{q} = [B]{q} I [B;]{qi}
i= J

(12)

where [B], [BI ] are the interpolation relationships.
Assuming perfect bonds between laminae and traction-free boundary conditions, the

stress field for the kth layer can be expressed by

(13)

where {fJk} is the unknown stress parameter vector, and [Pk] is the assumed stress matrix
illustrated in the following and shown in the Appendix. Procedures for constructing the
stress field will be discussed later.

Through dividing the nt-layered laminate into n finite elements and neglecting body
forces, the Hellmger-Reissner functional becomes

where Vki is the volume of the kth element. Sum is the loaded surface area, and {f} are the
prescribed external loadings.

Substitution ofegns (11)-(13) into egn (14) yields
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n= itlk~1 Gwr f[pknSk][pkjdVW}-{fiT f[PkjT[BjdV{qi})+{qT f[N]T{f}dS.

(15)

After the volume integrations, the functional becomes

(16)

where

All integrations are carried out by Gaussian quadrature.
For ease of implementation, a layer assembly process is accomplished in eqn (16). The

resulting equation becomes

n = ~{fi}T[H]{f1} - {firIG]{q} + {qr{Q}· ( 17)

After taking the variations of n with respect to the independent vectors {q} and {fi},
with bn = 0, and solving for {fi}, the following equations are obtained

{fi} = [ll] 1 [G] {q}

[k]{q} - {Q} ~~ 0

where the element stiJfness matrix is given by

[kj = [(W[ll] I [Gj.

(18)

( 19)

(20)

An element assembly process is then introduced into eqn (19) in the usual way. Then, the
global equations are readily available.

ASSUMED STRESS FIELD

A four-node Mindlin hybrid plate element has been developed. The displacement field
of each layer is interpolated with bilinear shape functions. The consistent in-plane strain
field can be chosen as follows:

Gx = (31 + (32~ + {J, IJ + ((f/4 +/35( + (36 rt)

G1 = (37+(3X~+(391J+W/IO+fJll~+t/121J)

}'n = (313 +PI4(+(3151J+((PI6+PI7(+PlslJ) (21)

where ~, IJ, ( are the natural coordinates corresponding to x, y, z. The above equation can
be expressed in matrix form as

(22)

where {r;} IP = [E" G,., )x,Y is the in-plane strain vector, and [P'] is a polynomial matrix.
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Accordingly, the in-plane stress field for the kth layer can be obtained by substituting
eqn (22) into eqn (7) :

(23)

where {(l} IP = [(J:(J;r~IY is the in-plane stress vector, and [Qkhp are the material properties
associated with the in-plane stress and strain.

Based on the in-plane stress field in eqn (23), the transverse stress field is formulated
through the stress equilibrium equations. After imposing interlaminar traction and traction­
free boundary conditions, the final assumed stress field can be constructed, as shown in the
Appendix.

NUMERICAL EXAMPLES

To demonstrate the accuracy and efficiency of the present hybrid stress bimodulus
plate element, four examples are illustrated in this section. Bimodulus cross-ply orthotropic
laminates, and aramid-rubber and polyester-rubber laminates subjected to sinusoidal load­
ing are investigated.

A sinusoidally distributed transverse load

q(x,y) = qo sin(rrxla) sin(nylb) (24)

where qo is applied on the top surface of the laminated plates. For comparisons, the
following nondimensionalizations are also employed:

lOOE~w(aI2, h12, 0)w= "-"
qoh3 5 4

E~) w(a/2, b/2, 0)w* = --,:-.----),
qoh4

(25)

where a, h are the length and width, h is the thickness, and IV is the maximum displacement
at the center of the plate. As for the through thickness distributions (Yo (J, are located at
the plate center (aj2, hI2), T" is at (0,0), ryo is at (aj2, 0), and T,: is at (0, hI2).

The normalized neutral surface locations are defined as

(26)

where Z" is the single-layer plate of isotropic material, and Z"" Z"r are for two-layered
cross-ply laminates of orthotropic material.

Simply-supported rectangular plates are studied. Owing to symmetry, only a quarter
plate is analysed and modeled by a mesh of 6 x 6 elements except in the convergence study.
In all examples, the maximum deflections and neutral surface locations are compared to
available analytical or finite element solutions. Higher-order plate theory is adopted in
an analytical solution by Fung and Doong (1988), Tseng and Bai (1993) developed a
displacement-based higher-order plate element, and Cho el at. (1990) proposed higher­
order individual-layer theory. Cho's results are thought to be the most accurate. For
E'lE" = I ordinary material, Cho et at. obtained the same results as Pagano's elasticity
solution (1970). It is noted that the stress analysis for bimodulus laminates are also
presented, which has never been discussed in previous studies.
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Example 1: cross-ply bimodulus laminates oforthotropic material
The orthotropic material properties with respect to the principal material axes of each

lamina are

Young's modulus (E)
Tension Compression

Shear modulus (G)
Tension Compression

Poisson's ratio (v)
Tension and compression

E'l = 25E,E, = E,
E~ = £2

E\ = 25£,E, = 1.0
E\ = E',

G\2 = 0.5E'
G2] = 0.2E'
GIl] = 0.5E'

G'l' = 0.5E'
G" = 0.2E'
G'i = 0.5E'

V'I = 0.25
Vii = '-'/iEI/Ei

(i ¥- J, i,J = 1,2,3)

Table 1 lists the present results for (0'/90") bimodulus a/h= 10 thick laminates with
other available solutions appended for ease of comparison. Very close results are observed
for Tseng and Bai (1993) and Fung and Doong (1988), since both used higher-order theory.
The present study reveals similar tendency. It is worthwhile pointing out that the present
element can provide a more accurate displacement analysis than the higher-order theory,
although only the first-order theory was incorporated herein. This is due to the elegancy of
the hybrid stress method in predicting accurate stress distributions. Results for a/h = 100
square thin plates and a/h = 10 thick plates are displayed in Tables 2 and 3, respectively.
Similar behaviors are observed and the results of this element are in good agreement with
the other solutions.

Convergence studies for the cases of 17,/E, = 2 and 0.2 are shown in Fig. 3, where fast
convergence is observed. Therefore, the mesh of 6 x 6 elements are used in all examples.
Acceptable stress analyses for (0"/90°) cross-ply laminates of ordinary material are illus­
trated in Figs 4 and 5. Compared to Pagano's elasticity solution, the present results for
an E'/E' = 1 plate satisfy interlaminar transverse stress continuity and the traction-free
conditions. Figures 6 and 7 depict the through thickness stress distributions of (J" Ix: for
an £~/£2 = 2 plate, and Figs 8 and 9 are (Jr' I,: for an £~!E; = 0.2 plate. The series
solutions based on higher-order theory are also displayed, where the discontinuous. interface
transverse stresses are noted.

Table 1. Normalized maximum center deflections and neutral surface locations of orthotropic bimodular (0'/90')
,quare laminate under sinusoidal loading (5 = 10, alb = 1.0)

Present (6*61 Tseng and Bal (19931 Fung and Doong (1988) Cho f( al. (1990)
E;/E~ Znx Znl' W Znx Znl W Znx Znr W Znx Zm W

------~-~--_.,-------

02 0.1374 -0.3310 3.2391 0.1389 -0.3377 3.0181 0.1364 -0.3378 3.0298 0.1280 ~03488 3.3340
0.6 02030 -0.2677 1.6225 0.2053 -0.2682 1.5918 0.2036 -02707 1.5996 0.1979 - 02748 1.6200
1.0 02353 -0.2353 1.2336 0.2387 -0.2340 1.2214 0.2372 -02372 1.2266 0.2351 - 02371 1.2270
14 0.2566 -0.2136 10494 0.2608 -0.2116 1.0380 0.2593 -0.2150 1.0413 0.2601 -- 0.2124 1.0460
2.0 0.2789 -0.1908 0.8992 0.2838 -0.1884 0.8823 0.2824 -0.1918 0.8832 0.2862 -(unl 0.9000

Table 2. Normalized maximum center deflections and neutral surface locations of orthotropic bimodular (0'/90')
square laminate under sinusoidal loading (5 = 100, alb = 1.0)

Present (6*6) Tseng and Bai Fung and Doong Cho eI al.
ES/ES Znx Znv W Znx Znv W Znx Zny W Znx Zm J-V

--- -- --- ---------- ---- --- ----~

0.2 0.1371 -0.3295 25808 0.1375 -03333 2.6255 0.1373 -03332 2.6249
2.0 0.2790 -0.1907 0.7664 0.2792 ·-0.1912 0.7674 0.2971 -0.1914 07667 0.2792 --01914 0.7677
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Fig. 3. Convergence studies for isotropic single plates.
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Fig. 9. r~,(O, bI2,:::) for two-layer cross-ply bimodular laminate.

Table 3. Normalized maximum center deflections and neutral surface locations of orthotropic bimodular (0"/90')
rectangular laminate under sinusoidal loading (S = 10. alb = 0.3)

Present (6*6) Tseng and Bai Fung and Doong Cho eI at.
£;/£'2 Znx Zny W Znx Zny W Znx Zny IV Znx Zn.\' IV

0.2 0.1341 -0.3315 7.3474 0.1347 -0.3600 7.0450 0.1344 -0.3600 70.606
2.0 0.2746 -0.2038 2.0636 0.2774 -0.2079 2.0214 0.2765 -0.2153 2.0172 0.2083 -0.2201 2.0420

Example 2: aramid-rubber and polyester-rubber
Two actual bimodular materials used in automobile tires are aramid-rubber and

polyester-rubber, whose material properties are

Aramid-rubber Tension Compression

Young's modulus (Ei

Shear modulus (G)

Poisson's ratio (v)

Polyester-rubber
Young's modulus (E)

Shear modulus (G)

Poisson's ratio (v)

Ei = 358
E; = E\ = 0.00909
G'" = G\ 1 = 0.00370
G;, = 0.00290
v'" = v'" =, 0.415

Tension
E', = 0.617
E; = E\ = 0.0080
G'" = G~\ = 0.00262
G;, = 0.00233
v'12 = v'" =,0.475

E', = 0.0120
E, = E, = 0.0120
G';, = G'" = 0.00370
G2l = 0.00499
v", = v", = 0.205

Compression
E', = 0.0369
E2 = E, = 0.0106
G'" = G'" = 0.00262
G21 = 0.00475
1"10 = 1"" = 0.185
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Table 4. Normalized maximum center deflections and neutral surface locations ofaramid-rubber (0"/90°) laminate
under sinusoidal loading (S = 100)

Present (6*6) Tseng and Bai C.F. F.E.
a/h Znx Zn\' W* Znx Zn}' W* Znx Zn}' W· Znx Zn}' W*

-_ ..__ ... _-_.._".•_- _.._._--_ .._.-
~.. _ .. _-_._~~-

05 04435 -0.0721 0.00182 04434 -0.0724 0.00181 04438 --0.0714 0.00181 04390 --0.0720 0.00180
0.7 04418 -0.0515 0.00594 0.4417 -0.0516 0.00592 0.4423 --0.0517 0.00593 04419 --00530 0.00588
1.0 04384 -0.0357 0.01778 04383 -00358 0.01771 04389 --00355 0.01780 0.4392 --0.0371 0.01761
14 04325 - 00253 0.03956 04326 -0.0252 0.03939 04332 --00249 0.03961 04334 --0.0259 003917
2.0 04218 -0.0177 006903 04220 -0.0176 0.06869 04228 --00182 0.06894 04229 --0.0182 0.06826

c.r : closed-form solution (Reddy and Chao, 1980).
F.E. . finite element solution (Reddy and Chao. 1980).

Table 5. Normalized maximum center deflections and neutral surface locations of polyester..rubber (0'/90)
laminate under sinusoidal loading (5 = 100)

a/h
Present (6*6)

Znx Zn.I· W·
Tseng and Bai

Zn.x Zn.}' W· Znx
C.F.
Zn}' W* Znx

F.E.
Zn.}' W·

0.5 03600 -0.1401 0.00192 0.3649 -0.1411 0.00190 0.3650 --0.1412 0.00190 0.3719 -- 0 1310 0.00189
0.7 03634 -0.1115 0.00625 03635 -0.1138 0.00622 0.3638 --0.1139 0.00623 0.3642 --01171 0.00618
1.0 03607 -0.0963 0.01785 0.361 I -0.0962 0.01766 03622 --0.0961 0.01783 0.3618 --00993 0.01762
14 0.3562 -0.0871 0.03505 03569 -0.0868 0.03479 03573 --0.0867 0.03497 03583 --0.0896 0.03451
20 03477 -0.0820 0.05116 03492 -0.0815 0.05067 0.3498 --O.08IS 0.05090 03541 --00776 005021

Tables 4 and 5 are for ajh = 100 thin rectangular cross-ply laminates. The predicted
results are quite accurate, compared to the results by Reddy and Chao (1980) and Tseng
and Bai (1993). The deviation is under 2%.

CONCLUSIONS

Several comparative benchmark problems have been presented to demonstrate the
applicability and accuracy of the present Mindlin hybrid stress element in the analysis of
bimodulus laminated plates. Excellent accuracy and fast convergence are observed. More­
over, the present results based on first-order theory are even better than those of higher­
order theory. This implies that the transverse shear stress are significant factor for composite
laminates. The presented through thickness stress distributions for bimodulus laminates
are believed to be reasonable.
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APPENDIX

The formulated stress field for a two-layer bimodulus laminated plate is

Q\ , Q~ 1~ Q\,'1 Q\, ( Q11~' Q\, '1(

Q\, Q\,~ Q\2'1 Q\,( Q\2~( Q\,'1(

r' r2-
0 C;'2 - Q\ h( C;'l-Q\,( 0 C' Qk S C' )"

[Pk] = 1'25- It> 2 ""-'Q '2 2

r'
C' )' ('0 C;" -Q\,( C;'l-Q\,,( 0 c' Q i,··,'(;5- 11'"2 d-'{!"2

Q\" Q\,,~ Q\,'1 Q\h( Qj6~( Q\,'1(

Q\, Q\,~ Q\,,] Q\,( Q\2~( Q\211(

Q;, Q;,~ Q;,'1 Q;,( Q;2C;( Q;,I1(

Ck Q' ('
r2

() C~" - Q;,( C;." - Q;,( () Ck k S
'y:ll- 262 ,," _. Q12 2

,,2 r'
0 C~:k -Q~2( C;'9 - Q3,,( 0 C' Qk S C' k S

x:ll- 12:~ ,,12 -·Q26 2

Q3, Q;h~ Q;,11 Q;,( Q;6C;( Q;,I1(

Q\" Q\,~ Q\ 6'7 Q\,,( Q\,,~( Q\,I1(

Q;, Q;,~ Q;"I/ Q;,,( Q;,~( Q;,I1(

c' Q' ('
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0 C;"4 -Q6"( C7'::I~-Q~{l 0
k k ~-

y:;17 - 662 C",,-Q'''2

v,
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where C;" and C;" are constants.
For the 11rst layer. the constants are

0 h,Q:, h,Q :, 0
hi , hi ,

t:'} =

2 QII "2 QIO

C" 0 h,Q:, h,Qi, ()
hi , hi ,
2 Q '6 2' Q"

0 h,Q h, Q~, 0
hi , hi ,

0 h,Q:6 h, QA6 0
h~ 1

M 'I
2 Q12 2- QU. 2 Q'6 : Q66

0 h,Q:." h,Qi, 0
hi , hi ,

0 h, QA6 h, Q~6 () h~ 1 hi ,
2 Q26 '2 Q12 2 Q'6 2 Q2"
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For the 2nd-kth layer, the recurrence formulas for the constants are

hi(Q/~1 _Q~; I) h,(Q~" - Q~(~ I)
h' h,' (Q' J'- 1I) 0 -'-(Q' -Q'-I'I 2" "-!.!16)2 - 11 11_

hi(Q~,,-Q~;;I) h,(Q~, -Q~,I)
M h,', 'II) 0 -'-(Q' - Q' 1\ 2"(QI1-QI1 )2 16 1 t> J

0 h,'(J' Q'I 11; J.. I: I
ZQI1- 11 ) 2"(Q'I>--Q'6 )

h,'), Q' I) h'
0 2"({) '6 - 'I> -'-(Q'" - Q',; I)2--

0
h;;, J" I) h,' (Q' Q' _12-(Q I" - Q 1(, 2- (,1>- "" )

0
h,', , I) h,' Q' QII2(Q66 -Q66 2-( 2" - -", )

where hi is the thickness of the ith lamina_


